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Abstract: Our framework for spatial data mining heavily depend on the eff icient processing of neighborhood relations since the neighbors of many 
objects have to be investigated in a single run of a typical algorithm. Therefore, providing general concepts for neighborhood relations as well as 
an eff icient implementation of these concepts w ill allow a tight integration of spatial data mining algorithms w ith a spatial database management 

system. This w ill speed up both, the development and the execution of spatial data mining algorithms. In this paper, w e define neighborhood 
graphs and paths and a small set of database primitives for their manipulation. We show  that typical spatial data mining algorithms are w ell sup-
ported by the proposed basic operations. For f inding signif icant spatial patterns, only certain classes of paths “ leading away” from a starting ob-
ject are relevant. We discuss f ilters allow ing only such neighborhood paths which will signif icantly reduce the search space for spatial data mining 

algorithms. Furthermore, we introduce neighborhood indices to speed up the processing of our database primitives. We implemented the data-
base primitives on top of a commercial spatial database management system. The effectiveness and eff iciency of the proposed appr oach was 
evaluated by using an analytical cost model and an extensive experimental study on a geographic database. 

 

Index Terms— Database Primitives for Spatial Data Mining, Algorithms for Spatial Data Mining, Eff icient DBMS Support Based on 

Neighborhood Indices.   

——————————      —————————— 

1 INTRODUCTION                                                                     

he computerization of many business and government 
transactions and the advances in scientific data collection 
tools provide us with a huge and continuously increasing 

amount of data. This explosive growth of databases has far 
outpaced the human ability to interpret this data, creating an 
urgent need for new techniques and tools that support the 
human in transforming the data into useful information and 
knowledge. Knowledge discovery in databases (KDD) has been 
defined as the non-trivial process of discovering valid, novel, 
and potentially useful, and ultimately understandable 
patterns from data [FPS 96]. The process of KDD is interactive 
and iterative, involving several steps such as the following 
ones: 
• Selection: selecting a subset of all attributes and a subset of 
all data from which the knowledge should be discovered. 
•Data reduction: using dimensionality reduction or transforma-
tion techniques to reduce the effective number of attributes to 
be considered. 
• Data mining: the application of appropriate algorithms that, 
under acceptable computational efficiency limitations, pro-
duce a particular enumeration of patterns over the data. 
• Evaluation: interpreting and evaluating the discovered pat-
terns with respect to their usefulness in the given application. 

 
Spatial Database Systems (SDBS) (see [Gue 94] for an overview) 
are database systems for the management of spatial data. To 
find implicit regularities, rules or patterns hidden in large spa-
tial databases, e.g. for geo-marketing, traffic control or envi-
ronmental studies, spatial data mining algorithms are very 
important (see [KHA 96] for an overview of spatial data min-
ing). 
 
Most existing data mining algorithms run on separate and 
specially prepared files, but integrating them with a database 
management system (DBMS) has the following advantages. Re-
dundant storage and potential inconsistencies can be avoided. 
Furthermore, commercial database systems offer various in-
dex structures to support different types of database queries. 
This functionality can be used without extra implementation 

effort to speed-up the execution of data mining algorithms 
(which, in general, have to perform many database queries). 
Similar to the relational standard language SQL, the use of 
standard primitives will speed-up the development of new 
data mining algorithms and will also make them more porta-
ble. 
 
In this paper, we introduce a set of database primitives for 
mining in spatial databases. [AIS 93] follows a similar ap-
proach for mining in relational databases. Our database primi-
tives are based on the concept of neighborhood relations since 
attributes of the neighbors of some object of interest may have 
an influence on the object itself. The proposed primitives are 
sufficient to express most of the algorithms for spatial data 
mining from the literature. We present techniques for efficient-
ly supporting these primitives by a DBMS. 
 
The rest of the paper is organized as follows. Section 2 intro-
duces our database primitives for spatial data mining. In sec-
tion 3, we review spatial data mining algorithms and demon-
strate how they can be expressed by using the proposed primi-
tives. Section 4 presents methods of efficiently supporting our 
database primitives by existing DBMSs. Section 5 summarizes 
the contributions and discusses several issues for future re-
search.  

2 DATABASE PRIMITIVES FOR SPATIAL DATAMINING 

In this section, we introduce a small set of database primitives 
for spatial data mining (see [EKS 97] for a first sketch). The 
major difference between mining in relational databases and 
mining in spatial databases is that attributes of the neighbors 
of some object of interest may have an influence on the object 
itself. Therefore, our database primitives are based on the con-
cept of spatial neighborhood relations. 

 
2.1 Neighborhood Relations 

The mutual influence between two objects depends on factors 
such as the topology, the distance or the direction between the 

T 
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objects. For instance, a new industrial plant may pollute its 
neighborhood depending on the distance and on the major 
direction of the wind. Figure 1 depicts a map used in the as-
sessment of a possible location for a new industrial plant. The 
map shows three regions with different degrees of pollution 
(indicated by the different colors) caused by the planned plant. 

Furthermore, the influenced objects such as communities and 
forests are depicted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this section, we introduce three basic types of spatial rela-
tions: topological, distance and direction relations which are 
binary relations, i.e. relations between pairs of objects. Spatial 
objects may be either points or spatially extended objects such 
as lines, polygons or polyhedrons. Spatially extended objects 
may be represented by a set of points at its surface, e.g. by the 
edges of a polygon (vector representation) or by the points 
contained in the object, e.g. the pixels of an object in a raster 
image (raster representation). Therefore, we use sets of points 

as a generic representation of spatial objects. In general, the 
points p = (p1, p2, . . ., pd) are elements of a d-dimensional Euc-
lidean vector space called Points. In the following, however, 
we restrict the presentation to the 2-dimensional case, al-
though, all of the introduced notions can easily be applied to 
higher dimensions d. Spatial objects O are represented by a Set 
off points, i.e. O ∈ 2Points set off points, For a point p = (px, py), px 
and py denote the coordinates of p in the first and the second 
dimension. ∆x (O):= max {|ox - px| | o, p ∈ O} is called the x-
extension of O and ∆y (O):= max {|oy - py| | o, p ∈ O} the y-
extension of O. 

 
Topological relations are those relations which are invariant un-
der topological transformations, i.e. they are preserved if both 
objects are rotated, translated or scaled simultaneously. The 
formal definitions are based on the boundaries, interiors and 
complements of the two related objects. 
 
Definition 1: (topological relations) The topological relations 
between two objects A and B are derived from the nine inter-
sections of the interiors, the boundaries and the complements 

of A and B with each other. The relations are: A disjoint B, A 
meets B, A overlaps B, A equals B, A covers B, A covered-by B, A 
contains B, A inside B. A formal definintion can be found in 
[Ege 91]. 
Distance relations are those relations comparing the distance of 
two objects with a given constant using one of the arithmetic 
operators. The distance dist between two objects, i.e. sets of 
points, can then simply be defined by the minimum distance 
between their points. 
 
Definition 2: (distance relations) Let dist be a distance func-
tion, let σ be one of the arithmetic predicates <, > or = , let c be 
a real number and let O1 andO2 be spatial objects, i.e. O1,O2 ∈ 
2Points. Then a distance relation A distances σc B holds iff dist (O1, 
O2) σc. 
 
In the following, we define 2-dimensional direction relations 
and we will use their geographic names. For dimensions d > 2, 
the number of different direction relations increases but the 
underlying concepts are still the same. 
 
To define direction relations O2 R O1, we distinguish between 
the source object O1 and the destination object O2 of the direction 
relation R. There are several possibilities to define direction 
relations depending on the number of points they consider in 
the source and the destination object. We define the direction 
relation of two spatially extended objects using one represent-
ative point rep (O1) of the source object O1 and all points of the 
destination object O2. The representative point of a source ob-
ject may, e.g., be the center of the object. This representative 
point is used as the origin of a virtual coordinate system and 
its quadrants define the directions. 
 
Definition 3: (direction relations) Let rep (A) be a representa-
tive point in the source object A. 

- B northeast A holds, iff  b ∈B: bx ≥³ rep(A)x   by ³ rep(A)y 
  southeast, southwest and northwest are defined analo          
   gously. 
- B north A holds, iff  b B: by ³ rep (A) y 
   south, west, east are defined analogously. 
- B any_direction A is defined to be TRUE for all A, B. 
 
Figure 2 illustrates some of the topological, distance and direc-
tion relations using 2D polygons. 

 

 
 
 
 
 
 
 
 
 

Obviously, for each pair of spatial objects at least one of the 
direction relations holds but the direction relation between 

 

Figure 1. Regions of pollution around a planned industrial plant 
[BF 91] 

 

 

Figure 2. Illustration of the direction relations 
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two objects may not be unique. Only the special relations 
northwest, northeast, southwest and southeast are mutually ex-
clusive (if we exclude objects with holes, objects with a co-
dimension greater than 0, and separations). However, if con-
sidering only these special directions there may be pairs of 
objects for which none of these direction relations hold, e.g. if 
some points of B are northeast of A and some points of B are 
northwest of A. On the other hand, all the direction relations 
are partially ordered by a specialization relation (simply given 
by set inclusion) such that the smallest direction relation for 
two objects A and B is uniquely determined. We call this smal-
lest direction relation for two objects A and B the exact direction 
relation of A and B. 
 
Topological, distance and direction relations may be combined 
by the logical operators   (and) as well as   (or) to express a 
complex neighborhood relation. 
 
Definition 4: (complex neighborhood relations) If r1 and r2 

are neighborhood relations, then r1  r2 and r1  r2 are also 
neighborhood relations - called complex neighborhood relations. 

2.2 Neighborhood Graphs and Their Operations 

Based on the neighborhood relations, we introduce the con-
cepts of neighborhood graphs and neighborhood paths and 
some basic operations for their manipulation. 
 
Definition 5: (neighborhood graphs and paths) Let neighbor be 

a neighborhood relation and DB  2Points be a database of ob-
jects. 

a) A neighborhood graph G

DB

neighor
= (N, E) is a graph with the 

set of nodes N which we identify with the objects o DB and 
the set of edges E  N  N where two nodes n1 and n2 N are 
connected via some edge of E iff neighbor(n1,n2) holds. Let n 
denote the cardinality of N and let e denote the cardinality of 
E. Then, f: = e / n denote the average number of edges of a node, 
i.e. f is called the “fan out” of the graph. 
 
b) A neighborhood path is a sequence of nodes [n1, n2. . . nk], 

where neighbor (ni, ni+1) holds for all ni  N, 1  i < k. The num-
ber k of nodes is called the length of the neighborhood path.  
 

c) A neighborhood path [n1, n2. . . nk] is valid iff  i  k, j < k: i j 
ni nj.  
 
Lemma 1: The expected number of neighborhood paths of 
length k starting from a given node is f k -1 and the expected 
number of all neighborhood paths of length k is then n*f k -1. 
 
In the following, we will only create valid neighborhood paths, 
i.e. paths containing no cycles. Obviously, even the number of 
valid neighborhood paths may become very large. For the 
purpose of KDD, however, we are mostly interested in a cer-
tain class of paths, i.e. paths which are “leading away” from 
the starting object in a straightforward sense. We conjecture 

that a spatial KDD algorithm using a set of paths which are 
crossing the space in an arbitrary way, leading forward and 
backwards and contain cycles will not produce useful patterns 
(if any will be produced at all). Therefore, in addition to our 
general restriction to valid paths, the operations on neighbor-
hood paths will provide parameters (filters) to further reduce 
the number of paths actually created. 
 
We will present the signature of the most important opera-
tions and a short description of their meaning using the fol-
lowing domains: Objects, NRelations (neighborhood rela-
tions), Predicates, Integer, NGraphs (neighborhood graphs), 
NPaths (neighborhood paths), 2Objects, 2NPaths. We do not define 
an explicit domain of databases. Instead, we use the domain 
2Objects of all subsets of the set of all objects. 
 
We assume the standard operations from relational algebra 
such as selection, union, intersection and difference to be available 
for sets of objects and for sets of paths. For instance, the opera-
tion selection (db, pred) returns the set of all elements of a da-
tabase db satisfying the predicate pred. We introduce the fol-
lowing basic operations for neighborhood graphs and paths:  
 
neighbors: NGraphs x Objects x Predicates --> 2Objects 
extensions: NGraphs x 2NPaths x Integer x Predicates -> 2NPaths 
paths: 2Objects --> 2NPaths; 
objects: 2NPaths --> 2Objects 

 

The operation neighbors (graph, object, pred) returns the set of 
all objects connected to object via some edge of graph satisfy-
ing the conditions expressed by the predicate pred. The addi-
tional selection condition pred is used if we want to restrict 
the investigation explicitly to certain types of neighbors. The 
definition of the predicate pred may use spatial as well as non-
spatial attributes of the objects. 
 
The operation extensions (graph, paths, max, and pred) return 
the set of all paths extending one of the elements of paths by at 
most max nodes of graph. All the extended paths must satisfy 
the predicate pred. Because the number of neighborhood 
paths may become very large, the operation extension is the 
most critical operation with respect to efficiency of data min-
ing algorithms. Therefore, the predicate pred in the operation 
extensions acts as a filter to restrict the number of paths 
created using domain knowledge about the relevant paths. 
Note that the elements of paths are not contained in the result 
implying that an empty result indicates that none of the ele-
ments of paths could be extended. 
 
The operation paths (setOfObjects) creates the set of all paths 
of length 1 formed by a single element of setOfObjects. The 
operation objects (setOfPaths) returns the set of all objects as-
sociated with at least one of the nodes of one element of se-
tOfPaths. 



International Journal of Scientific  & Engineering Research Volume 3, Issue 2, February-2012                                                                                  4 

ISSN 2229-5518 

 

 

IJSER © 2012 

http://www.ijser.org   

2.3 Filter Predicates for Neighborhood Paths 

Neighborhood graphs will in general contain many paths 
which are irrelevant if not “misleading” for spatial data min-
ing algorithms. For finding significant spatial patterns, we 
have to consider only certain classes of paths which are “lead-
ing away” from the starting object in some straightforward 
sense. Such spatial patterns are most often the effect of some 
kind of influence of an object on other objects in its neighbor-
hood. Furthermore, this influence typically decreases or in-
creases continuously with increasing or decreasing distance. 
The task of spatial trend analysis, i.e. finding patterns of sys-
tematic change of some non-spatial attributes in the neighbor-
hood of certain database objects, can be considered as a typical 
example. Detecting such trends would be impossible if we do 
not restrict the pattern space in a way that paths changing di-
rection in arbitrary ways or containing cycles are eliminated. 
 
In the following, we discuss two possible filter predicates, star-
like and variable-starlike. Other filters may be useful depending 
on the application. 
 
Definition 6: (filter starlike and filter variable starlike) Let p 
= [n1, n2...nk] be a neighborhood path and let reli be the exact 
direction for ni and ni+1, i.e. ni+1 reli ni holds. The predicates 
starlike and variable-starlike for paths p are defined as follows: 
Starlike (p): ( j < k:  i > jni+1 reli nireli  relj), if k > 1; 
TRUE, if k=1 
variable-starlike(p) :( j < k: i > j: ni+1 reli nireli rel1), if k > 
1; TRUE, if k=1. 
 
 
 
 
 
 
 
 
The filter starlike requires that, when extending a path p, the 
exact “final” direction relj of p cannot be generalized. For in-
stance, a path with “final” direction northeast can only be ex-
tended by a node of an edge with exact direction northeast but 
not by an edge with exact direction north. 
 
The variable-starlike filter is less restrictive than the starlike fil-
ter. It requires only that, when extending a path p with a node 
nk+1, the edge e = (nk, nk+1) has to fulfill at least the exact “ini-

tial” direction rel1 of p. Note that relj rel1 holds if a filter (star-
like or variable-starlike) is used for each extension starting from 
length 1. For instance, a neighborhood path with “intial” di-
rection north can be extended by a node nk+1 if e satisfies the 
direction north or one of the more special directions northeast 
or northwest. Figure 3 illustrates the neighborhood paths for 
the filters starlike and variable-starlike when extending the paths 
from a given starting object. 
 

The exact direction relation rel for a source object A and a des-
tination object B is not independent from their sizes. If B is 
smaller than A then rel is likely to be a special relation, if B is 
larger than A then rel typically is a general direction relation. 
In the following, we analyze this dependency considering the 
special but important case of A and B having the same size. 
Let A be a source object and B be a destination object satisfy-
ing A intersect B and B south A. Then, there are three groups of 
such objects B as depicted in figure 4. 
 
 
 
 
 
 
 
 
 
All objects of the middle group B2 fulfill the exact direction 
relation B2 south A. For the objects of the two outer groups, B1 
and B3, the exact direction relation is one of the special rela-
tions, i.e. B1 southwest A and B3 southeast A. Assuming a uni-
form distribution of the representative points of the B objects 
and assuming that B intersects A holds, the exact direction 
relation of the B objects is distributed as follows: 25% south-
west, 25% southeast, 50% south. Generalizing this observation, 
we find that each of the four generalized (specialized) direc-
tions is the exact direction relation for 1  6 f (1  12) f out of 
the f neighbors of some source object. Figure 5 illustrates the 
distribution of the exact direction relations of the B objects. 
 
 
 
 
 
 
 
 
 
 
 
Under the above assumptions, we can calculate the number of 
all starlike neighborhood paths of a certain length l for a given 
fanout f of the neighborhood graph. The following lemma 
gives the order of the number of these paths for f = 6 and f = 
12. 
 
Lemma 2: Let A be a spatial object and let l be an integer. Let 
intersects be chosen as the neighborhood relation. If the repre-
sentative points of all spatial objects are uniformly distributed 

and if they have the same x and y, then the number of all 
starlike neighborhood paths with source A having a length of 
at most l is O(2l) for f = 12 and O(l) for f = 6. 
 
Lemma 2 allows us to estimate the number of neighborhood 
paths created when using the filter starlike. The assumptions of 

 

Figure 3. Illustration of two different filter predicates 

 

Figure 4. Objects B with “B south of A and B intersects A” 

 

Figure 5. Distribution of the exact direction relations 
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this lemma may seem to be too restrictive for real applications. 
Note, however, that intersects is a very natural neighborhood 
relation for spatially extended objects. To evaluate the as-
sumptions of uniform distribution of the representative points 
of the spatial objects and of the same size of these objects, we 
conducted a set of experiments to compare the expected num-
bers of neighborhood paths with the actual number of paths 
created on a real database. 
 
A geographic database on Bavaria was used for this experi-
mental evaluation. The database contains the ATKIS 500 data 
[Atk 96] and the Bavarian part of the statistical data obtained 
by the German census of 1987. Also included are spatial ob-
jects representing natural object like mountains or rivers and 
infrastructure such as highways or railroads. The total number 
of spatial objects in the database is n = 6,924 and the database 
size is 57.4 MB. 
 
The average number f of edges of a node plays a crucial role in 
lemma 2. This lemma calculates the number of starlike neigh-
borhood paths for values of f = 6 and f = 12. Therefore, we 
created a different neighborhood graph for each of these f val-
ues from the same geographic database by using the neigh-
borhood relations distance  a and distance  b. The distances a 
and b were set such that the resulting f value was 6 and 12 re-
spectively, that is the total number of edges e was e = 6 * 

n and e = 12 * n respectively. In our test database, we found f  
6 for the neighborhood relation intersect implying that the 
above distance a was close to 0. We selected typical communi-
ties from the geographic database as source objects according 
to the following criteria. The communities should be located 
sufficiently far enough from the Bavarian border so that 
neighborhood paths with a length of at least 5 can be created. 
There should be a balanced mix of small and a large communi-
ty (in terms of their area) since the number of actual neighbors 
of a community is correlated to its area. 
 
We created all neighborhood paths as well as the starlike 
neighborhood paths with a maximum length of up to 5 for 
each of the selected sources. Table 1 reports the results for f = 6  

 
and for f = 12. The table shows the results depending on the 
parameter maximum length. The largest value of maximum 

length was only 5 due to the very large number of all neigh-
borhood paths and the corresponding large runtime for creat-
ing them. Note that the numbers presented in the columns “all 
paths“and “starlike paths“ do only count the number of paths 
having a length of exactly the specified max-length, i.e. they do 
not count the shorter paths. The columns “factor of increase” 
give the quotient of the number of paths in the current row 
and the number of paths in the previous row (i.e. for the pre-
vious value of max-length). 
 
We find that for f = 6 the number of all neighborhood paths 
(starting from the same source) with a length of at most max-
length is O(6max-length) and the number of the starlike neighbor-
hood paths only grows approximately linear with increasing 
max-length - as stated by lemma 2. For f = 12 the number of all 
neighborhood paths with a length of at most max-length is O 
(12max-length) as we can expect from the lemma. However, the 
number of the starlike neighborhood paths is significantly less 
than the stated value O (2max-length). This deviation from lemma 
2 can be explained as follows. The lemma assumes the same 
size of the spatial objects. However, small destination objects 
are more likely to fulfil the filter starlike than large destination 
objects implying that the size of objects on starlike neighbor-
hood paths tends to decrease. Thus, the factor of increase de-
creases significantly because in general small objects have less 
neighbors than large objects. Note that lemma 2 nevertheless 
yields an upper bound for the number of starlike neighbor-
hood paths created. 
 
The factors of increase, listed in table 1, provide some interest-
ing insights. The factors of increase are approximately as 
stated by lemma 2. However, we observe that these factors are 
exceptionally large for max-length = 2, i.e. when comparing the 
paths for max-length = 1 and maxlength = 2. The reason is that 
the filter starlike does not yield any restrictions for the exten-
sion of paths with length 1 since these paths do not yet have a 
characteristic direction. Therefore, the factor of increase for 
max-length = 2 is the same for all paths as for the starlike paths. 

3 ALGORITHMS FOR SPATIAL DATAMINING 

To support our claim that the expressivity of our spatial data 
mining primitives is adequate, we demonstrate how typical 
spatial data mining algorithms can be integrated with a spatial 
DBMS by using the database primitves introduced in section 
2. 

3.1 Spatial Clustering 

Clustering is the task of grouping the objects of a database into 
meaningful subclasses (that is, clusters) so that the members of 
a cluster are as similar as possible whereas the members of 
different clusters differ as much as possible from each other. 
Applications of clustering in spatial databases are, e.g., the 
detection of seismic faults by grouping the entries of an earth-
quake catalog or the creation of thematic maps in geographic 
information systems by clustering feature spaces.  

 

Table 1: Numbers of neighborhood paths 
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Different types of spatial clustering algorithms have been pro-
posed, e.g. k-medoid clustering algorithms such as CLARANS 
[NH 94]. This is an example of a global custering algorithm 
(where a change of a single database object may influence all 
clusters) which cannot make use of our database primitives in 
a natural way. On the other hand, the basic idea of a single scan 
algorithm is to group neighboring objects of the database into 
clusters based on a local cluster condition performing only one 
scan through the database. Single scan clustering algorithms 
are efficient if the retrieval of the neighborhood of an object 
can be efficiently performed by the SDBS. Note that local clus-
ter conditions are well supported by our database primitives, 
in particular by the neighbors operation on an appropriate 
neighborhood graph. The algorithmic schema of single scan 
clustering is depicted in figure 6. 
 
Different cluster conditions yield different notions of a cluster 
and different clustering algorithms. For example, GDBSCAN 
(Generalized Density Based Spatial Clustering of Applications 
with Noise) [SEKX 98] relies on a density-based notion of clus-
ters. The key idea of a densitybased cluster is that for each 
point of a cluster its Eps-neighborhood for some given Eps > 0 
has to contain at least a minimum number of points, i.e. the 
“density” in the Eps-neighborhood of points has to exceed 
some threshold. This idea of “density-based clusters” can be 
generalized in two important ways. First, any notion of a 
neighborhood can be used instead of an Eps-neighborhood if 
the definition of the neighborhood is based on a binary predi-
cate which is symmetric and reflexive. Second, instead of 
simply counting the objects in a neighborhood of an object 
other measures to define the “cardinality” of that neighbor-
hood can be used as well. Whereas a distance-based neighbor-
hood is a natural notion of a neighborhood for point objects, it 
may be more appropriate to use topological relations such as 
intersects or meets to cluster spatially extended objects such as a 
set of polygons of largely differing sizes. See [SEKX 98] for a 
detailed discussion of suitable neighborhood relations for dif-
ferent applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Spatial Characterization 

The task of characterization is to find a compact description for 
a selected subset of the database. In this section, we discuss 
the task of characterization in the context of spatial databases 
and review two relevant methods. 
 
Extending the general concept of association rules, [KH 95] 
introduces spatial association rules which describe associations 
between objects based on spatial neighborhood relations. For 
instance, a user may want to discover the spatial associations 
of towns in British Columbia with roads, waters, mines or 
boundaries having some specified support and confidence. 
Then, the following spatial association rule may be discov-
ered: 
X DB  Y  DB: is-a(X, town)  close-to(X, Y)   is-a(Y, 
water) (80%) 
 
This rule states that 80% of the selected towns are close to wa-
ter, i.e. the rule characterizes towns in British Columbia as 
generally being close to some lake, river etc.  
 
The algorithm presented in [KH 95] to find spatial association 
rules consists of 5 steps. Step 2 (coarse spatial computation) 
and step 4 (refined spatial computation) involve spatial as-
pects of the objects and are briefly examined in the following. 
Step 2 computes spatial joins of the object type to be characte-
rized (such as town) with each of the other specified object 
types (such as water, road, boundary or mine) using a neigh-
borhood relation (such as close-to). For each of the candidates 
obtained from step 2 (and which passed an additional filter-
step 3), the exact spatial relation, for example overlap, is deter-
mined in step 4. Finally, a relation such as the one depicted in 
figure 7 results which is the input for the final step of rule 
generation. It is easy to see that the spatial steps 2 and 4 of this 
algorithm can be well supported by the neighbors operation 
on a suitable neighborhood graph. 
 
 
 
 
 
 
 
 
 
 
[EFKS 98] introduces the following definition of spatial charac-
terization with respect to a database and a set of target objects 
which is a subset of the given database. A spatial characteriza-
tion is a description of the spatial and non-spatial properties 
which are typical for the target objects but not for the whole 
database. The relative frequencies of the non-spatial attribute 
values and the relative frequencies of the different object types 
are used as the interesting properties. For instance, different 
object types in a geographic database are communities, moun-

SingleScanClustering (Database db; NRelation rel) 
set Graph to create_NGraph (db,rel); 
initialize a set CurrentObjects as empty; 
for each node O in g do 
     if O is not yet member of some cluster then 
          create a new cluster C; 
          insert O into CurrentObjects; 
         while CurrentObjects not empty do 
              remove the first element of CurrentObjects as O; 
              set Neighbors to neighbors(Graph, O, TRUE); 
             if Neighbors satisfy the cluster condition do 
                 add O to cluster C; 
                 add Neighbors to CurrentObjects; 
end SingleScanClustering; 

Figure 6. Schema of single scan clustering algorithms 

 

 

Figure 7. Input for the step of rule generation [KH 95] 
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tains, lakes, highways, railroads etc. To obtain a spatial charac-
terization, not only the properties of the target objects, but also 
the properties of their neighbors (up to a given maximum 
number of edges in the relevant neighborhood graph) are con-
sidered. 
 

A spatial characterization rule of the form target  p1 (n1, freq-
fac1)   ...   pk (nk, freq- fack) means that for the set of all targets 
extended by ni neighbors, the property pi is freq-faci times more 
(or less) frequent than in the database. The characterization 
algorithm usually starts with a small set of target objects, se-
lected for instance by a condition on some non-spatial 
attribute(s) such as “rate of retired people = HIGH” (see figure 
8, left). Then, the algorithms expands regions around the tar-
get objects, simultaneously selecting those attributes of the 
regions for which the distribution of values differs significant-
ly from the distribution in the whole database (figure 8, right). 
 
 
 
 
 
 
 
 
 
 
 
 
In the last step of the algorithm, the following characterization 
rule is generated describing the target regions. Note that this 
rule lists not only some non-spatial attributes but also the 
neighborhood of mountains (after three extensions) as signifi-
cant for the characterization of the target regions: 

community has high rate of retired people  
apartments per building = very low (0, 9.1)    
rate of foreigners = very low (0, 8.9)  
rate of academics = medium (0, 6.3)    

average size of enterprises = very low (0, 5.8)  
object type = mountain (3, 4.1) 

Obviously, this algorithm is well suited for support by the 
proposed database primitives. 

3.3 Spatial Classification 

The task of classification is to assign an object to a class from a 
given set of classes based on the attribute values of this object. 
In spatial classification the attribute values of neighboring ob-
jects are also considered. 
 
The algorithm presented in [KHS 98] works as follows: The 
relevant attributes are extracted by comparing the attribute 
values of the target objects with the attribute values of their 
nearest neighbors. The determination of relevant attributes is 
based on the concepts of the nearest hit (the nearest neighbor 
belonging to the same class) and the nearest miss (the nearest 
neighbor belonging to a different class). In the construction of 

the decision tree, the neighbors of target objects are not consi-
dered individually. Instead, so-called buffers are created 
around the target objects and the nonspatial attribute values 
are aggregated over all objects contained in the buffer. For 
instance, in the case of shopping malls a buffer may represent 
the area where its customers live or work. The size of the buf-
fer yielding the maximum information gain is chosen and this 
size is applied to compute the aggregates for all relevant 
attributes. Figure 9 depicts an example of a spatial decision 
tree classifying stores as having a high or low profit. 
 
 
 
 
 
 
 
 
 
 
Whereas the nearest neighbor cannot be directly expressed by 
our neighborhood relations, it would be possible to extend our 
set of neighborhood relation accordingly. The proposed data-
base primitives are, however, sufficient to express the creation 
of buffers for spatial classification. 

3.4 Spatial Trend Detection 

A spatial trend has been defined as a regular change of one or 
more non-spatial attributes when moving away from a given 
start object o [EFKS 98]. Neighborhood paths starting from o 
are used to model the movement and a regression analysis is 
performed on the respective attribute values for the objects of 
a neighborhood path to describe the regularity of change. For 
the regression, the distance from o is the independent variable 
and the difference of the attribute values are the dependent 
variable(s) for the regression. The correlation of the observed 
attribute values with the values predicted by the regression 
function yields a measure of confidence for the discovered 
trend. 
 
Global as well as local trends are possible. The existence of a 
global trend for a start object o indicates that if considering all 
objects on all paths starting from o the values for the specified 
attribute(s) in general tend to increase (decrease) with increas-
ing distance. Figure 10 (left) depicts the result of algorithm 
global-trend for the attribute “average rent” and the city of 
Regensburg as a start object. Algorithm local-trends detects 
single paths starting from an object o and having a certain 
trend. The paths starting from o may show different pattern of 
change, e.g., some trends may be positive while the others 
may be negative. Figure 10 (right) illustrates this case for the 
attribute “average rent” and the city of Regensburg as a start 
object. 
 
 
 

 

Fig. 8. Characterizing wrt. high rate of retired people [EFKS 98] 

 

 

Figure 9. Spatial decision tree [KHS 98] 
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The algorithms for spatial trend detection are naturally sup-
ported by our paths and extensions operation. 

4  EFFICENT DBMS SUPPORT BASED ON 

NEIGHBORHOOD INDICES 

Typically, spatial index structures, e.g. R-trees [Gut 84], are 
used in an SDBMS to speed up the processing of queries such 
as region queries or nearest neighbor queries [Gue 94]. Note 
that our default implementation of the neighbors operations 
uses an R-tree. If the spatial objects are fairly complex, howev-
er, retrieving the neighbors of some object this way is still very 
time consuming due to the complexity of the evaluation of 
neighborhood relations on such objects. Furthermore, when 
creating all neighborhood paths with a given source object, a 
very large number of neighbors operations has to be per-
formed. Finally, many SDBS are rather static since there are 
not many updates on objects such as geographic maps or pro-
teins. Therefore, materializing the relevant neighborhood 
graphs and avoiding to access the spatial objects themselves 
may be worthwhile. This is the idea of the neighborhood in-
dices. 

4.1 Neighborhood Indices 

In this section, we review related work on join indices and 
then we introduce our concept of neighborhood indices. The 
idea of a (relational) join index [Val 87] is to maintain a pre-
computed structure containing all pairs of tuples from the two 
input relations satisfying some join predicate. [Val 87] shows 
how such indices can be used by a query optimizer to speed-
up the processing of join operations. The join index is imple-
mented as a binary relation. [Rot 91] introduced the concept 
of spatial join indices as a materialization of a spatial join with 
the goal of speeding up spatial query processing. Given two 
sets of vertices V1 and V2 and a set of edges E, an abstract join 
index is defined as the bipartite graph (V1, V2, E). [Rot 91] de-
scribes an algorithm to generate a spatial join index from a 
grid file. In this case, the elements of the Vi represent the page 
regions, that is the sets of cells of the directory mapped to the 
same data page. E contains an edge for each pair of vertices 
from V1 and V2 where the corresponding page regions have an 
e-overlap for some e specified by the database administrator. 
Furthermore, an algorithm is presented for updating the join 
index on updates of the underlying grid files. [Rot 91] does not 
discuss the physical design of spatial join indices. 
 

[LH 92] refines the concept of spatial join indices. The ele-
ments of the Vi represent objects instead of page regions. A 
distance associated join index consists of tuples of the form (ob-
ject1,object2,distance(object1,object2)) for each pair of database 
objects. This join index can be used to support not only queries 
concerning a single neighborhood relation but it is applicable 
to a large number of queries. Since a distance associated join 
index requires O(n2) space for a database of n objects, a hierar-
chical version is also proposed. These indices assume a spatial 
concept hierarchy of objects. A hierarchical distance associated 
join index has one entry only for pairs of objects contained in 
the same object of the next higher level of the hierarchy. For 
instance, only pairs of cities in the same state or pairs of hous-
es in the same city are represented by an index entry. This ap-
proach significantly reduces the space requirements but also 
prevents its application for spatial data mining if a spatial con-
cept hierarchy is either not available or not relevant for the 
task of mining. For example, in a geographic information sys-
tem there may be a spatial concept hierarchy of districts > 
communities > etc. but the influence of communities to their 
neighborhood is not restricted to communities of the same 
district. Consequently, we cannot rely on such hierarchies - 
representing a political viewpoint - for the purposee of sup-
porting spatial data mining. 
 
Our concept of neighborhood indices is related to that of the dis-
tance associated join indices with the following new contribu-
tions: 

• A specified maximum distance restricts the pairs of 
objects represented in a neighborhood index. 
• For each of the different types of neighborhood rela-
tions (that is distance, direction, and topological 
relations), the concrete relation of the pair of objects is 
stored. 

In the following, we introduce neighborhood indices more 
formally. 
 
Definition 7: neighborhood index 
 
Let DB be a set of spatial objects and let max and dist be real 
numbers. Let D be a direction relation and T be a topological 
relation. Then the neighborhood index for DB with maximum 

distance max, denoted by 
max

DB

I  , is defined as follows: 

 

max

DB

I  = {(O1, O2, dist, D, T) | O1, O2 DB, O1 distance=dist O2  

dist max  O2 D O1   O1 T O2}. 
 
A simple implementation of a neighborhood index using a B+-
tree on the key attribute Object-ID is illustrated in figure 11. 
 
 
 
 
 
 

 

Figure 10. Spatial trends of the“average rent” starting from the 

city of Regensburg 
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A neighborhood index supports not only one but a set of 
neighborhood graphs. We call a neighborhood index applicable 
for a given neighborhood graph if the index contains an entry 
for each of the edges of the graph. To find the neighborhood 
indices applicable for some neighborhood graph, we introduce 
the notion of the critical distance of a neighborhood relation r. 
intuitively, the critical distance of a neighborhood relation r is 
the maximum possible distance for a pair of objects O1 and O2 
satisfying O1 r O2. The following definitions introduce these 
notions formally. 
 
Definition 8: applicable neighborhood index 
  
Let GDBr be a neighborhood graph and let II  DBmax be a neigh-

borhood index.  
max

DB

I  is applicable for 
DB

rG   

iff  (O1  DB, O2  DB) O1r O2  (O1, O2, dist, D, T) 
max

DB

I    

 
Definition 9: critical distance of a neighborhood relation 
 

 Let r be a neighborhood relation and let  denote the set of 
the real numbers. Let 2Points denote the set of all spatial objects. 
The critical distance of r, denoted as c-distance(r), is defined as 
follows: 
 

c-distance(r) = 





min( )if D is non emptyD

Otherwise
 

with the set D defined as: 
 

Dd   O1 O2 2PointsO1rO2 O1distance = dist O2)  dist  
d)} 
 
The following lemma allows to calculate the critical distance 
for any neighborhood relation. The critical distance is calcu-
lated recursively along the composition of a neighborhood 
relation. 
 
Lemma 3: The following equation holds for the critical dis-
tance of a neighborhood relation r: 

 

C-distance(r) = 

1 2

1 2

0

min( tan ( ), tan ( ))

max( tan ( ), tan ( ))

c

c dis ce r c dis ce r

c dis ce r c dis ce r







 
  

 

0              if r is a-topological relation except disjoint 

c               if r is the relation distance<c or distance=c 

             if r is a direction, the relation distance> or disjoint 

Min(c-distance (r1), c-distance (r2))       if r=r1   r2 
Max(c-distance (r1),c-distance(r2))         if r=r1    r2 
 
A neighborhood index with a maximum distance of max is 
applicable for a neighborhood graph with relation r if the criti-
cal distance of r is not larger than max. This is the contents of 
lemma 4. 
 

Lemma 4: Let 
DB

rG  be a neighborhood graph and let 
max

DB

I  be 

a neighborhood index.  
 

If max c-distance(r), then 
max

DB

I  is applicable for 
DB

rG  . 

Obviously, if two neighborhood indices 
1

DB

cI  and 
2

DB

cI  with 

c1 < c2 are available and applicable, using 
1

DB

cI  is more effi-

cient because in general it has less entries than 
2

DB

cI . The smal-

lest applicable neighborhood index for some neighborhood graph 
is the applicable neighborhood index with the smallest critical 
distance. 
 
In figure 12, we sketch the algorithm for processing the neigh-
bors operation which makes use of the smallest applicable 
neighborhood index. If there is no applicable neighborhood 
index, then the standard approach of using some spatial index  
structure is followed. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The first step of algorithm neighbors, the index selection, selects 
a neighborhood index. The filter step returns a set of candidate 
objects (which may satisfy the specified neighborhood rela-
tion) with a cardinality significantly smaller than the database 
size. In the last step, the refinement step, for all these candidates 
the neighborhood relation as well as the additional predicate 

 

Figure 11. Sample Neighborhood Index 

 

neighbors (graph 
DB

rG  , object o, predicate pred) 

         select as I the smallest applicable neighbor     

              hood index for 
DB

rG  ; // Index Selection 

       if such I exists then // Filter Step 
           use the neighborhood index I to retrieve as    
           candidates the set of objects c 
           having an entry (o,c,dist, D, T) in I 
       else use the spatial index for DB to retrieve as    
            candidates 
            the set of objects c satisfying o r c; 
            initialize an empty set of neighbors; 
             // Re finement Step 
       for each c in candidates do 
       if o r c and pred(c) then 
             add c to neighbors 
      return neighbors; 

Figure 12. Algorithm neighbors 
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pred are evaluated and all objects passing this test are returned 
as the resulting neighbors. 
 
To implement the extensions operation, we perform a depth-
first search. Thus, a path buffer of size O(max-length) is suffi-
cient to store the intermediate results. On the other hand, a 
breadthfirst search would require a much larger buffer size 
since it begins creating all paths before finishing the first one. 
To retrieve the nodes for potential extensions of a candidate 
path, the neighbors operations is used indicating that the effi-
ciency of this operation is crucial. Figure 13 presents the algo-
rithm for the extensions operation in pseudo-code notation. 
 

To create a neighborhood index 
max

DB

I  , a spatial join on DB 

with respect to the neighborhood relation O1distance = dist (O2 
dist max) is performed. A spatial join can be efficiently 
processed by using a spatial index structure, see e.g. [BKSS 
94]. For each pair of objects returned by the spatial join, we 
then have to determine the exact distance, the direction rela-
tion and the topological relation. The resulting tuples of the 
form (O1, O2, Distance, Direction, Topology) are stored in a rela-
tion which is indexed by a B-tree on the attribute O1. 
 
Updates of a database, i.e. insertions or deletions of spatial 
objects, require updates of the derived neighborhood indices. 

Fortunately, the update of a neighborhood index 
max

DB

I  is re 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stricted to the neighborhood of the respective object defined 
by the neighborhood relation A distance< max B. This neighbor-
hood can be efficiently retrieved by using either a neighbor-
hood index (in case of a deletion) or by using a spatial index 
structure (in case of an insertion). As an example, we discuss 
insertions of a new spatial object o to a database of spatial ob-
jects d. The retrieval of the relevant neighbors of o is not sup-
ported by any neighborhood index since o is a new object. 

However, the spatial index structure assumed to be available 
for d supports this retrieval.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that there may be several neighborhood indices derived   
from the same database d and that all relevant ones have to be 
updated to include an entry for each of the neighbors of o. 
Figure 14 presents the algorithm insert-object in pseudo-code 
notation. In each of the relevant neighborhood indices, two 
entries have to be inserted for each pair (o,neighbor). Recall that 
the direction relations and the topological relations are not 
symmetric so that the relation r has to be determined for o r 
neighbor as well as for neighbor r o. 

4.2 Cost Model 

A cost model is developed to predict the cost of performing a 
neighbors operation with and without a neighborhood index. 
For database algorithms, usually the number of page accesses 
is chosen as the cost measure. However, the amount of CPU 
time required for evaluating a neighborhood relation on spa-
tially extended objects such as polygons may become very 
large so that we model both, the I/O time and the CPU time 
for an operation. We use tpage, i.e. the execution time of a page 
access, and tfloat, i.e. the execution time of a floating point com-
parison, as the units for I/O time and CPU time, respectively. 
 
In table 2, we define the parameters of the cost model and list 
typical values for each of them. The system overhead s in-
cludes client-server communication and the overhead induced 
by several SQL queries for retrieving the relevant neighbor-
hood index and the minimum bounding box of a polygon (ne-

extensions(graph g, list of paths p, integer max-length,   
                                                                                    filter f) 
          initialize an empty list extensions; 
          initialize the list of path-candidates to the list p; 
         while path-candidates is not empty do 
                remove the first element of path-candidates as          
                cand; 
          if length of cand < max-length then 
                 set o to last node of cand; 
                 call neighbors(g,o, TRUE) obtaining the set      
                 neighborhood; 
          for each element neighbor of neighborhood do 
                 create an extension ext of cand by adding neigh             
                 bor as the last node; 
                if ext is valid and ext satisfies the filter f then 
                 add ext to extensions; 
                 add ext at the head of the list path-candidates; 

return path-candidates; 
Figure 13. Algorithm extensions 

Insert-object (database d, object o) 
         set maximum to the maximum distance of the largest    

         neighborhood index 
max

d

imumI derived from d; 

         retrieve as neighborhood all objects n from d satisfy    
         ing by dist (n, o) maximum using the spatial index    
         structure associated with d; 
     for each element neighbor of neighborhood do 
        calculate distance as dist(neighbor,o); 
        calculate direction as the direction relation of neigh 
        bor and o; 
        calculate reverse-direction as the direction relation of     
        o and neighbor; 
        calculate topology as the topological relation of    
        neighbor and o; 
        calculate reverse-topology as the topological relation   
        of o and neighbor; 

     for each neighborhood index 
max

d

I  derived from d do 

     if distance  max then 
             insert the entry (neighbor, o, distance, direction,   

             topology) into 
max

d

I  ; 

             insert the entry (o, neighbor, distance, reverse- 

             direction, reverse-topology) into 
max

d

I  ; 

Figure 14. Algorithm insert-object 
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cessary for the access of the R-tree). pindex and pdata denote the 
probability that a requested index page and data page, respec-
tively, have to be read from disk according to the buffering 
strategy. 
 
Table 3 shows the cost for the three steps of processing a 
neighbors operation with and without a neighborhood index. 
In the R-tree, there is one entry for each of the n nodes of the 
neighborhood graph whereas the B+-tree stores one entry for 
each of the f * n edges. We assume that the number of R-tree  

 
paths to be followed is proportional to the number of neigh-
boring objects, i.e. proportional to f. A spatial object with v 
vertices requires v/cv data pages. We assume a distance rela-
tion as neighborhood relation requiring v2 floating point com-
parisons. When using a neighborhood index, the filter step 
returns ff * f candidates. The refinement step has to access their 
index entries but does not have to access the vertices of the 
candidates since the refinement test can be directly performed 
by using the attributes Distance, Direction and Topology of the 
index entries. This test involves a constant, i.e. independent of 
v, number of floating point comparisons and requires no page 
accesses such that its cost can be neglected. 

4.3 Experimental Results 

We implemented the database primitives on top of the com-
mercial DBMS Illustra [Ill 97] using its 2D spatial data blade 
which provides R-trees. A geographic database of Bavaria was 
used for an experimental performance evaluation and valida-
tion of the cost model. This database represents the Bavarian 
communities with one spatial attribute (polygon) and 52 non-
spatial attributes (such as average rent or rate of unemploy-
ment). All experiments were run on HP9000/715 (50MHz) 
workstations under HP-UX 10.10. 
 
 
 
 
 
 
 
 
 
 
 
 
The first set of experiments compared the performance pre-
dicted by our cost models with the experimental performance 

when varying the parameters n, f and v. The results show that 
our cost model is able to predict the performance reasonably 
well. For instance, figure 15 depicts the results for n = 2,000, v 
= 35 and varying values for f. 
 
We used our cost model to compare the performance of the 
neighbors operation with and without neighborhood index for 
combinations of parameter values which we could not eva-
luate experimentally with our database. Figure 16 depicts the 
results (1) for f = 10, v = 100 and varying n and (2) for n = 
100,000, f = 10 and varying v. These results demonstrate a sig-
nificant speed-up for the neighbors operation with compared 
to without neighborhood index. In particular, the neighbor-
hood index is very efficient for complex spatial objects, i.e. for 
large values of v which is typical, e.g., for geographic informa-
tion systems. 
 
The next set of experiments analyzed the system overhead 
which is rather large for a single neighbors operation. This 
overhead, however, can be reduced when calling multiple 
correlated 
 
 
 
 
 
 
 
 
 
 
 
 

neighbors operations issued by one extensions operation, since 
the client-server communication, the retrieval of the relevant 
neighborhood index etc. is necessary only once for the whole 
extensions operation and not for each of the neighbors opera-

 

Table 3: Cost model for the neighbors operation 

 

Table 2: Parameters of the cost model 

 

Figure 16. Comparison w ith and without neighborhood index 

 

Figure 15. Comparison of cost model versus experimental results 
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tions. In our experiments, we found that the system overhead 
was typically reduced by 50%, e.g. from 211 to 100 ms. 
 
To conclude, when using neighborhood indices we obtain a 
significant speed-up for the neighbors operation. This opera-
tion is most crucial to the efficient DBMS support of the data-
base primitives since the implementation of the operations for 
extending neighborhood paths is based on the neighbors op-
eration. The speed-up grows strongly with increasing number 
of vertices of the spatial objects. There is a large system over-
head induced by the DBMS which is significantly reduced 
when considering sets of neighbors operations issued from the 
same extensions operation. 

5  CONCLUSION 

In this chapter, we introduced a framework for spatial data 
mining which is based on the concepts of neighbourhood 
graphs and paths. A small set of basic operations on these 
graphs and paths were defined as database primitives for spa-
tial data mining. Furthermore, techniques to efficiently sup-
port the database primitives by a commercial DBMS were pre-
sented. In the following sections, we covered the main tasks of 
spatial data mining: spatial clustering, spatial characterization, 
spatial trend detection and spatial classification. For each of 
these tasks, we presented algorithms as well as prototypical 
applications in domains such as the earth sciences and geo-
graphy. Thus, we demonstrated the practical impact of these 
algorithms of spatial data mining. 
 
The following issues indicate interesting directions for future 
research. The database primitives were implemented on top of 
the commercial DBMS Illustra. Since the system overhead im-
posed by this DBMS is rather large, techniques of improving 
the efficiency should be investigated. For example, techniques 
for processing sets of related neighbours operations which pro-
vide more information to the DBMS can be used to improve 
the overall efficiency of mining algorithms using the database 
primitives. 
 
In some spatial databases the dimension of time plays an im-
portant role: the history of the relevant part of the world is 
stored for the purpose of analysis, for example raster images 
of the same area of the surface of the earth taken at different 
times. Data mining in such spatio-temporal databases is a 
promising area of future research. For example, geographers 
may be interested in learning spatio-temporal rules describing 
the process of growth of urban landuse. 
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